

PRODUCT/PROCESS CHANGE NOTIFICATION

PCN MMS-MMY/13/7707 Dated 19 Mar 2013

M24LR04E-R, M24LR16E-R, M24LR64E-R Dual Interface EEPROM Refined design

Table 1. Change Implementation Schedule

Forecasted implementation date for change	12-Mar-2013
Forecasted availability date of samples for customer	12-Mar-2013
Forecasted date for STMicroelectronics change Qualification Plan results availability	12-Mar-2013
Estimated date of changed product first shipment	18-Jun-2013

Table 2. Change Identification

Product Identification (Product Family/Commercial Product)	M24LR04E-R, M24LR16E-R, M24LR64E-R
Type of change	Product design change
Reason for change	Redesign refined for device limitations fix
Description of the change	Redesign refined
Change Product Identification	See marking paragraph
Manufacturing Location(s)	

Table 3. List of Attachments

Customer Part numbers list	
Qualification Plan results	

	>\$
Customer Acknowledgement of Receipt	PCN MMS-MMY/13/7707
Please sign and return to STMicroelectronics Sales Office	Dated 19 Mar 2013
Qualification Plan Denied	Name:
Qualification Plan Approved	Title:
	Company:
🗖 Change Denied	Date:
Change Approved	Signature:
Remark	
· ·····	

Name	Function
Fidelis, Sylvain	Marketing Manager
Rodrigues, Benoit	Product Manager
Malbranche, Jean-Luc	Q.A. Manager

DOCUMENT APPROVAL

PRODUCT / PROCESS CHANGE NOTIFICATION

M24LR04E-R, M24LR16E-R, M24LR64E-R Dual Interface EEPROM Refined design

What is the change?

Following **devices limitations** described in the last revision of the corresponding **Errata sheet** (rev. 2 in APPENDIX D), the M24LR04E-R, M24LR16E-R and M24LR64E-R, 4-Kbit, 16-Kbit and 64-Kbit Dual Interface EEPROM with password protection, energy harvesting and RF status protections family products, has undergo through a refined design in order to fix:

- The RF field drop during I²C write cycle execution
- The SetRstEHEn command not functional in Addressed mode

As a consequence,

- Icc1 value has been changed from 40 µA to 100 µA at 5.5 V
- Icc1 at 1.8 V and 2.5 V being unchanged.

In addition, a T_Prog_flag bit has been added in the system memory to inform the application of proper execution of the write operation.

Datasheets of M24LR04E-R, M24LR16E-R and M24LR64E-R will be updated accordingly from current revisions respectively rev. 5, rev. 8, rev. 3 to new revisions respectively rev. 7, rev. 10, rev. 5.

Why?

The strategy of STMicroelectronics Memory Division is to support our customers on a long-term basis. In line with this commitment, the qualification of the M24LR04E-R, M24LR16E-R and M24LR64E-R with the refined design will improve service to our customers.

When?

The production of the M24LR04E-R, M24LR16E-R and M24LR64E-R with the design fix will ramp up from middle of March 2013 and shipments can start from end of June 2013 onward.

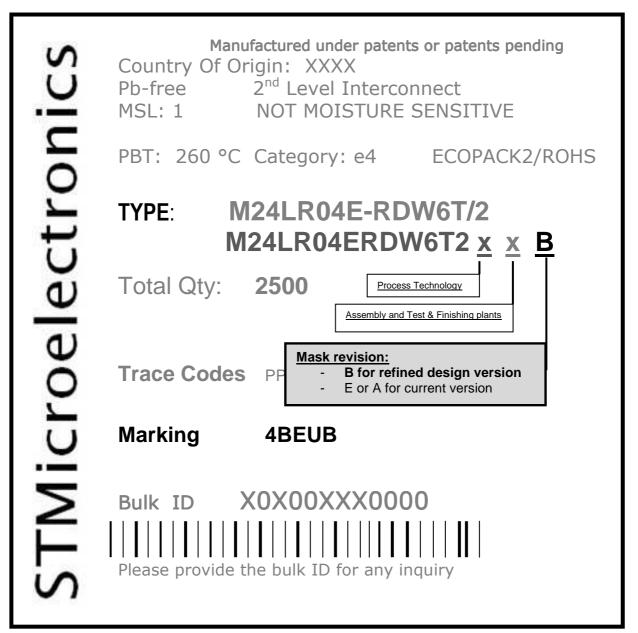
How was the change qualified?

The M24LR04E-R, M24LR16E-R and M24LR64E-R with the design fix have been qualified using the standard ST Microelectronics Corporate Procedures for Quality & Reliability.

The **Qualification Reports** QRMMY1127, QRMMY1016, QRMMY1128 are available and included inside this document.

What is the impact of the change?

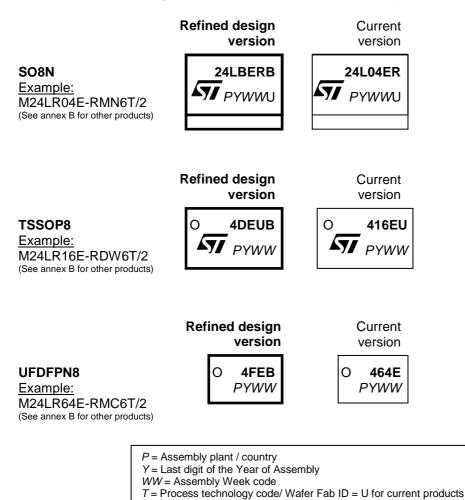
- Form: Marking change (see **Device marking** paragraph)
- Fit: No change


- Function: Change on DC characteristics Icc1 standby supply current and addition T_Prog_Flag bit in system area

How can the change be seen?

- BOX LABEL MARKING

On the BOX LABEL MARKING, the difference is visible inside the **Finished Good Part Number**: the **Mask revision** identifier is "**B**" for the **refined design version**, this identifier being "E" (M24LR04E-R & M24LR16E-R) or "A" (M24LR64E-R) for the current version.


→ Example for M24LR04E-RDW6T/2

How can the change be seen?

- DEVICE MARKING

For the device marking, the difference is visible inside the **product name** as following:

- IC REVISION IDENTIFICATION

All involved devices have the product revision set to 0xE and below (most significant nibble of 0x911 byte).

Appendix A- Product Change Information

Product family / Commercial products:	M24LR04E-R, M24LR16E-R and M24LR64E-R
	products family
Customer(s):	All
Type of change:	Product design change
Reason for the change:	Redesign refined for device limitations fix
Description of the change:	Redesign refined
Forecast date of the change: (Notification to customer)	Week 11 / 2013
Forecast date of <u>Qualification samples</u> availability for customer(s):	 Available for SO8N, TSSOP8 and UFDFPN8 Bare die Week 14
Forecast date for the internal STMicroelectronics change, <u>Qualification Report</u> availability:	The Qualification Reports QRMMY1127, QRMMY1016, QRMMY1128 are available and included inside this document.
Marking to identify the changed product:	See Device Marking paragraph
Description of the qualification program:	Standard ST Microelectronics Corporate Procedures for Quality and Reliability
Product Line(s) and/or Part Number(s):	See Appendix B
Manufacturing location:	Rousset 8 inch wafer fab
Estimated date of first shipment:	Week 25 / 2013

Appendix B: Concerned Commercial Part Numbers:

Commercial Package Part Numbers		Samples availability	Marking (*)
M24LR04E-RMN6T/2	SO8N	Available	24LBERB PYWWU
M24LR04E-RDW6T/2	TSSOP8	Available	4BEUB PYWW
M24LR04E-RMC6T/2	UFDFPN8	Available	4BEB PYWW
M24LR04E-RUW20/2	BARE DIE	Week 14	N/A
M24LR16E-RMN6T/2	SO8N	Available	24LDERB PYWWU
M24LR16E-RDW6T/2	TSSOP8	Available	4DEUB PYWW
M24LR16E-RMC6T/2	UFDFPN8	Available	4DEB PYWW
M24LR64E-RMN6T/2	SO8N	Available	24LFERB PYWWU
M24LR64E-RDW6T/2	TSSOP8	Available	4FEUB PYWW
M24LR64E-RMC6T/2	UFDFPN8	Available	4FEB PYWW

(*) Marking available also on Datasheet and Errata sheet

Appendix C: Qualification Report:

See following pages

QRMMY1128 Qualification report

New product / M24LR64E-R using the CMOSF8H technology in the Rousset 8" Fab

Table 1.Product information

General information					
Commercial product	M24LR64E-RMN6T/2 M24LR64E-RDW6T/2 M24LR64E-RMC6T/2				
Product description	64-Kbit EEPROM with password protection, dual interface & energy harvesting: 400 kHz I ² C bus & ISO 15693 RF protocol at 13.56 MHz				
Product group	MMS				
Product division	MMY - Memory				
Silicon process technology	CMOSF8H				
Wafer fabrication location	RS8F - ST Rousset 8 inch, France				
Electrical Wafer Sort test plant location	ST Rousset, France ST Toa Payoh, Singapore				

Table 2. Package description

Package description	Qualified assembly plant location	Qualified final test plant location
SO8N	ST Shenzhen, China	ST Shenzhen, China
TSSOP8	ST Shenzhen, China	ST Shenzhen, China
UFDFPN8 (MLP8) 2 x 3 mm	ST Calamba, Philippines	ST Calamba, Philippines

Reliability / Qualification assessment: PASS

1 Reliability evaluation overview

1.1 Objectives

This qualification report summarizes the results of the reliability trials that were performed to qualify the new product M24LR64E-R using the CMOSF8H silicon process technology in the ST Rousset 8" diffusion fab.

The voltage and the external RF carrier frequency covered by this document are:

- I²C interface:
 - Single supply voltage: 1.8 to 5.5 V
- Contactless interface:
 - ISO 15693 and ISO 18000-3 mode 1 compatible
 - RF carrier frequency: 13.56 MHz ± 7 kHz

The temperature range covered by this document is:

• -40 to 85 °C

The CMOSF8H is a new advanced silicon process technology that has already been qualified in the ST Rousset 8" fab, and is in production for EEPROM products and also for dual interface EEPROM M24LR64/M24LR16E/M24LR04E products. This document serves for the qualification of the named product using the named silicon process technology in the named diffusion fab.

1.2 Conclusion

The new product M24LR64E-R using the CMOSF8H silicon process technology in the ST Rousset 8" diffusion fab has passed the reliability requirements and all products described in *Table 1* are qualified.

Refer to Section 3: Reliability test results for details on the reliability test results.

2 Device characteristics

The M24LR64E-R device is a dual-interface, electrically erasable programmable memory (EEPROM). It features an I²C interface and can be operated from a V_{CC} power supply. It is also a contactless memory powered by the received carrier electromagnetic wave. The M24LR64E-R is organized as 8192 × 8 bits in the I²C mode and as 2048 × 32 bits in the RF mode.

The M24LR64E-R also features an energy harvesting analog output, as well as a user configurable digital output pin toggling during either RF write in progress or RF busy mode.

I²C uses a two-wire serial interface, comprising a bidirectional data line and a clock line. The devices carry a built-in 4-bit device type identifier code (1010) in accordance with the I²C bus definition.

The device behaves as a slave in the I²C protocol, with all memory operations synchronized by the serial clock. Read and Write operations are initiated by a Start condition, generated by the bus master. The Start condition is followed by a device select code and Read/Write bit (RW), terminated by an acknowledge bit.

When writing data to the memory, the device inserts an acknowledge bit during the 9th bit time, following the bus master's 8-bit transmission. When data is read by the bus master, the bus master acknowledges the receipt of the data byte in the same way. Data transfers are terminated by a Stop condition after an Ack for Write, and after a NoAck for Read.

In the ISO15693/ISO18000-3 mode 1 RF mode, the M24LR64E-R is accessed via the 13.56 MHz carrier electromagnetic wave on which incoming data is demodulated from the received signal amplitude modulation (ASK: amplitude shift keying). When connected to an antenna, the operating power is derived from the RF energy and no external power supply is required. The received ASK wave is 10% or 100% modulated with a data rate of 1.6 Kbit/s using the 1/256 pulse coding mode or a data rate of 26 Kbit/s using the 1/4 pulse coding mode.

Outgoing data is generated by the M24LR64E-R load variation using Manchester coding with one or two subcarrier frequencies at 423 kHz and 484 kHz. Data is transferred from the M24LR64E-R at 6.6 Kbit/s in low data rate mode and 26 Kbit/s high data rate mode. The M24LR64E-R supports the 53 Kbit/s fast mode in high data rate mode using one subcarrier frequency at 423 kHz.

The M24LR64E-R follows the ISO 15693 and ISO 18000-3 mode 1 recommendation for radio-frequency power and signal interface.

The M24LR64E-R provides an Energy-harvesting mode on the analog output pin Vout. When the Energy harvesting mode is activated, the M24LR64E-R can output the excess energy coming from the RF field on the Vout analog pin. In case the RF field strength is insufficient or when Energy harvesting mode is disabled, the analog output pin Vout goes into high-Z state and Energy harvesting mode is automatically stopped.

The M24LR64E-R features a user configurable digital out pin RF WIP/BUSY that can be used to drive a micro controller interrupt input pin (available only when the M24LR64E-R is correctly powered on the V_{CC} pin).

When configured in the RF write in progress mode (RF WIP mode), the RF WIP/BUSY pin is driven low for the entire duration of the RF internal write operation. When configured in the RF busy mode (RF BUSY mode), the RF WIP/BUSY pin is driven low for the entire duration of the RF command progress.

The RF WIP/BUSY pin is an open drain output and must be connected to a pull-up resistor.

Refer to the product datasheet for more details.

3 Reliability test results

This section contains a general description of the reliability evaluation strategy.

The named products are qualified using the standard STMicroelectronics corporate procedures for quality and reliability.

The product vehicle used for the die qualification is presented in *Table 3*.

Product	Silicon process technology location		Package description	Assembly plant location	
M24LR64E	CMOSF8H	ST Rousset 8"	CDIP8	Engi assy ⁽¹⁾	
M24LR16E ⁽²⁾	24LR16E ⁽²⁾ CMOSF8H ST Rousset 8"		CDIP8	Engi assy ⁽¹⁾	

 Table 3.
 Product vehicle used for die qualification

1. CDIP8 is a ceramic package used only for die-oriented reliability trials.

2. M24LR64E is derived from M24LR16E by metal mask option (same silicon process technology, same design core). Qualification data obtained on M24LR16E are applicable to M24LR64E.

The product vehicle used for package qualifications are presented in Table 4.

 Table 4.
 Product vehicle used for package qualification

Product	Silicon process technology	Wafer fabrication location	Package description	Assembly plant location	
M24LR16E ⁽¹⁾ CMOSF8H ST Rousset		SO8N	ST Shenzhen		
		3001	Subcon Amkor P1		
	CMOSF8H	ST Rousset 8"	TSSOP8	ST Shenzhen	
			13301.0	Subcon Amkor P1	
			UFDFPN8 (MLP8)	ST Calamba	
			2 x 3 mm	Subcon Amkor P3	

1. M24LR64E is derived from M24LR16E by metal mask option (same silicon process technology, same design core). Qualification data obtained on M24LR16E are applicable to M24LR64E.

3.1 Reliability test plan and result summary

The reliability test plan and the result summary are presented as follows:

- in *Table 5* for die-oriented tests
- in Table 6 for SO8N ST Shenzhen package-oriented tests
- in Table 7 for TSSOP8 ST Shenzhen package-oriented tests
- in Table 8 for UFDFPN8 (MLP8) 2 x 3 mm ST Calamba package-oriented tests

	Test short description									
Test		Conditions	Sample size /		Duration	Results fail / sample size				
	Method					M2	4LR16E	(2)	M24LR64E	
			lots	lots		Lot1	Lot2	Lot3	Lot4	Lot5 (3)
	High temperature	e operating life after end	durance		• •					
EDR	AEC-Q100-005	1 million E/W cycles at 25 °C then: HTOL 150 °C, 6 V	80	3	1008 hrs	0/80	0/80	0/80	-	-
EDK	Data retention af	ter endurance								
	AEC-Q100-005	1million E/W cycles at 25 °C then: HTSL at 150 °C	80	3	1008 hrs	0/80	0/80	0/80	-	-
LTOL	Low temperature	operating life					•			
	JESD22-A108	–40 °C, 6 V	80	3	1008 hrs	0/80	0/80	0/80	-	-
	High temperature storage life									
HTSL	JESD22-A103	Retention bake at 200 °C	80	3	1008 hrs	0/80	0/80	0/80	-	-
	Program/erase endurance cycling + bake									
WEB	Internal spec.	1 million E/W cycles at 25 °C then: Retention bake at 200 °C / 48 hours	80	3	1 million cycles / 48 hrs	0/80 ⁽⁴⁾	0/80 ⁽⁴⁾	0/80 ⁽⁴⁾	-	-
	Electrostatic disc	charge (human body mo	odel)				•			
ESD HBM	AEC-Q100-002	C = 100 pF, R= 1500 Ω pads AC0, AC1	27	3	N/A	Pass 1000 V	Pass 1000 V	Pass 1500 V	Pass 1000 V	Pass 1000 V
	JESD22-A114	C = 100 pF, R= 1500 Ω Other pads	27	3	N/A	Pass 3500 V	Pass 4000 V	Pass 4000 V	Pass 3500 V	Pass 4000 V
ESD	Electrostatic disc	charge (machine model))							
ESD MM	AEC-Q100-003 JESD22-A115	C = 200 pF, R = 0 Ω	21	3	N/A	Pass 400 V	Pass 400 V	Pass 400 V	Pass 400 V	Pass 400 V
	Latch-up (curren	t injection and overvolta	ige stress	S)					-	-
LU	AEC-Q100-004 JESD78A	At maximum operating temperature (150 °C)	6	3	N/A		Class II Level A	Class II Level A	Class II Level A	Class II Level A

Table 5. Die-oriented reliability test plan and result summary (CDIP8 / Engineering package)⁽¹⁾

1. See Table 9: List of terms for a definition of abbreviations.

2. M24LR64E is derived from M24LR16E by metal mask option (same silicon process technology, same design core). Qualification data obtained on M24LR16E are applicable to M24LR64E.

3. Reliability results obtained on lot 5 (refer to PCN MMS-MMY/13/7707).

4. First rejects after 5 million cycles.

	Test short description									
-			Comula	No. of		Re	e size			
Test	Method	Conditions	Sample size /		Duration	M24	4LR16E	(2)	M24LR64E	
			lots	lots		Lot1	Lot2	Lot3	Lot4	
	Preconditioning:	moisture sensitivity le	vel 1							
PC	JESD22-A113 J-STD-020D	MSL1, peak temperature at 260 °C, 3 IReflow	345	3	N/A	0/1145	0/345	0/1145	-	
	Temperature hur	nidity bias								
THB					168 hrs	0/80	0/80	0/80		
(3)		85 °C, 85% RH, bias 5.5 V	80	3	504 hrs	0/80	0/80	0/80	-	
					1008 hrs	0/80	0/80	0/80		
	Temperature cycling									
TC ⁽³⁾	AEC-Q100- JESD22-A104	–65 °C / +175 °C	80	3	1000 cycles	0/80	0/80	0/80	-	
TMSK -	Thermal shocks									
(3)	JESD22-A106	–55 °C / +125 °C	25	3	200 shocks	0/25	0/25	0/25	-	
	Autoclave (pressure pot)									
AC ⁽³⁾	AEC-Q100- JESD22-A102	121 °C, 100% RH at 2 ATM	80	3	168 hrs	0/80	0/80	0/80	-	
	High temperature	e storage life	L							
HTSL		Detention holes at			168 hrs	0/80	0/80	0/80		
(3)	AEC-Q100- JESD22-A103	Retention bake at 150 °C	80	3	504 hrs	0/80	0/80	0/80		
					1008 hrs	0/80	0/80	0/80		
	Early failure life r	ate						-		
	AEC-Q100-008	HTOL 150 °C, 6V	800	2	48 hrs	0/800	-	0/800	-	
ESD -		charge (charge device	model)					1		
CDM	AEC-Q100-011 JESD22-C101	Field induced charging method	18	1	N/A	Pass >1500 V	-	-	Pass >1500 V	

Table 6.	Package-oriented reliability test plan and result summary (SO8N / ST Shenzhen) ⁽¹⁾

1. See Table 9: List of terms for a definition of abbreviations.

2. M24LR64E is derived from M24LR16E by metal mask option (same silicon process technology, same design core). Qualification data obtained on M24LR16E are applicable to M24LR64E.

3. THB-, TC-, TMSK-, AC-, HTSL- and ELFR- dedicated parts are first subject to preconditioning flow.

			Test sł	nort d	escription						
T (Comula	of		Re	e size				
Test	Method	Conditions	Sample size /		Duration	M	24LR16E	(2)	M24LR64E		
			lots	lots		Lot1	Lot2	Lot3	Lot4		
	Preconditioning:	moisture sensitivity lev	el 1								
PC	JESD22-A113 J-STD-020D	MSL1, peak temperature at 260 °C, 3 IReflow	1145	3	N/A	0/1145	0/1145	0/1145	-		
	Temperature hur	nidity bias									
THB	450.0400				168 hrs	0/80	0/80	0/80			
(3)	AEC-Q100- 85 °C, 85% R JESD22-A101 bias 5.5 V	85 °C, 85% RH, bias 5.5 V	80	3	504 hrs	0/80	0/80	0/80	-		
					1008 hrs	0/80	0/80	0/80			
	Temperature cycling										
TC ⁽³⁾	AEC-Q100- JESD22-A104	–65 °C / +175 °C	80	3	1000 cycles	0/80	0/80	0/80	-		
TMSK	Thermal shocks	Thermal shocks									
(3)	JESD22-A106	–55 °C / +125 °C	25	3	200 shocks	0/25	0/25	0/25	-		
	Autoclave (press	Autoclave (pressure pot)									
AC ⁽³⁾	AEC-Q100- JESD22-A102	121 °C, 100% RH at 2 ATM	80	3	168 hrs	0/80	0/80	0/80	-		
	High temperature	e storage life			L		L		L		
HTSL	150.0400	Detention halos et			168 hrs	0/80	0/80	0/80			
(3)	AEC-Q100- JESD22-A103	Retention bake at 150 °C	80	3	504 hrs	0/80	0/80	0/80	-		
					1008 hrs	0/80	0/80	0/80	1		
ELFR	Early failure life r	ate									
(3)	AEC-Q100-008	HTOL 150 °C, 6V	800	3	48 hrs	0/800	0/800	0/800	-		
ESD	Electrostatic disc	charge (charge device	model)	-							
CDM	AEC-Q100-011 JESD22-C101	Field induced charging method	18	1	N/A	Pass >1500 V	-	-	Pass >1500 V		

Table 7. Package-oriented reliability test plan and result summary (TSSOP8 / ST Shenzhen) ⁽¹⁾

1. See *Table 9: List of terms* for a definition of abbreviations.

 M24LR64E is derived from M24LR16E by metal mask option (same silicon process technology, same design core. Qualification data obtained on M24LR16E are applicable to M24LR64E.

3. THB-, TC-, TMSK-, AC-, HTSL- and ELFR- dedicated parts are first subject to preconditioning flow.

Table 8. Package-oriented reliability test plan and result summary (UFDFPN8 MLP8 2 x 3 mm / ST Calamba) ⁽¹⁾

	Test short description									
						Results fail / sample size				
Test	Method	Conditions	Sample size /	No. of	Duration	M24LR16E ⁽²⁾			M24LR64E	
			lots	lots		Lot1	Lot2	Lot3	Lot4	
	Preconditioning:	moisture sensitivity lev	el 1		1					
PC	JESD22-A113 J-STD-020D	MSL1, peak temperature at 260 °C, 3 IReflow	345	3	N/A	0/345	0/345	0/345	-	
	Temperature hur	nidity bias							•	
тнв					168 hrs	0/80	0/80	0/80		
(3)	AEC-Q100- JESD22-A101	85 °C, 85% RH, bias 5.5 V	80	3	504 hrs	0/80	0/80	0/80	-	
					1008 hrs	0/80	0/80	0/80		
	Temperature cycling									
TC ⁽³⁾	AEC-Q100- JESD22-A104	–65 °C / +175 °C	80	3	1000 cycles	0/80	0/80	0/80	-	
TMSK	Thermal shocks	hermal shocks								
(3)	JESD22-A106	–55 °C / +125 °C	25	3	200 shocks	0/25	0/25	0/25	-	
	Autoclave (press	ure pot)								
AC ⁽³⁾	AEC-Q100- JESD22-A102	121 °C, 100% RH at 2 ATM	80	3	168 hrs	0/80	0/80	0/80	-	
	High temperature	e storage life			1					
HTSL					168 hrs	0/80	0/80	0/80		
(3)	AEC-Q100- JESD22-A103	Retention bake at 150 °C	80	3	504 hrs	0/80	0/80	0/80	-	
		100 0			1008 hrs	0/80	0/80	0/80		
ESD	Electrostatic disc	harge (charge device i	model)							
CDM	AEC-Q100-011 JESD22-C101	Field induced charging method	18	1	N/A	Pass >1500 V	-	-	Pass >1500 V	

1. See *Table 9: List of terms* for a definition of abbreviations.

 M24LR64E is derived from M24LR16E by metal mask option (same silicon process technology, same design core. Qualification data obtained on M24LR16E are applicable to M24LR64E.

3. THB-, TC-, TMSK-, AC-, and HTSL- dedicated parts are first subject to preconditioning flow.

4 Applicable and reference documents

- AEC-Q100: Stress test qualification for integrated circuits
- SOP 2.6.10: General product qualification procedure
- SOP 2.6.11: Program management fro product qualification
- SOP 2.6.12: Design criteria for product qualification
- SOP 2.6.14: Reliability requirements for product qualification
- SOP 2.6.19: Process maturity level
- SOP 2.6.2: Process qualification and transfer management
- SOP 2.6.20: New process / New product qualification
- SOP 2.6.7: Product maturity level
- SOP 2.6.9: Package and process maturity management in Back End
- SOP 2.7.5: Automotive products definition and status
- JESD22-A101: Steady state temperature humidity bias life test
- JESD22-A102: Accelerated moisture resistance unbiased autoclave
- JESD22-A103: High temperature storage life
- JESD22-A104: Temperature cycling
- JESD22-A106: Thermal shock
- JESD22-A108: Temperature, bias, and operating life
- JESD22-A113: Preconditioning of nonhermetic surface mount devices prior to reliability testing
- JESD22-A114: Electrostatic discharge (ESD) sensitivity testing human body model (HBM)
- JESD22-A115: Electrostatic discharge (ESD) sensitivity testing machine model (MM)
- JESD78A: IC Latch-up test
- J-STD-020D: Moisture/reflow sensitivity classification for nonhermetic solid state surface mount devices

5 Glossary

Table 9.	List of terms
----------	---------------

Terms	Description			
EDR	NVM endurance, data retention and operational life			
HTOL	High temperature operating life			
LTOL	Low temperature operating life			
НТВ	High temperature bake			
WEB	Program/Erase endurance cycling + bake			
ESD HBM	Electrostatic discharge (human body model)			
ESD MM	Electrostatic discharge (machine model)			
LU	Latch-up			
PC	Preconditioning (solder simulation)			
тнв	Temperature humidity bias			
тс	Temperature cycling			
тмѕк	Thermal shocks			
AC	Autoclave (pressure pot)			
HTSL	High temperature storage life			
ELFR	Early life failure rate			
ESD CDM	Electrostatic discharge (charge device model)			

6 Revision history

Table 10. Document revision history

Date	Revision	Changes
05-Apr-2012	1	Initial release.
19-Jun-2012	2	List of qualified commercial products updated in <i>Table 1</i> . Added reference to UFDFPN8 (MLP8) 2 x 3 mm package in <i>Table 2</i> . <i>Table 8</i> updated with latest results.
11-Feb-2013	3	<i>Table 5</i> updated with reliability results obtained on lot 5 (refer to PCN MMS-MMY/13/7707).

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

QRMMY1127 Qualification report

New product / M24LR04E-R using the CMOSF8H technology in the Rousset 8" Fab

General information					
Commercial product	M24LR04E-RMN6T/2 M24LR04E-RDW6T/2 M24LR04E-RMC6T/2				
Product description	4-Kbit EEPROM with password protection, dual interface & energy harvesting: 400 kHz I ² C bus & ISO 15693 RF protocol at 13.56 MHz				
Product group	MMS				
Product division	MMY - Memory				
Silicon process technology	CMOSF8H				
Wafer fabrication location	RS8F - ST Rousset 8 inch, France				
Electrical Wafer Sort test plant location	ST Rousset, France				

Table 1. Product information

Table 2.Package description

Package description	Qualified assembly plant location	Qualified final test plant location			
SO8N	ST Shenzhen, China	ST Shenzhen, China			
TSSOP8	ST Shenzhen, China	ST Shenzhen, China			
UFDFPN8 (MLP8) 2 x 3 mm	ST Calamba, Philippines	ST Calamba, Philippines			

Reliability / Qualification assessment: PASS

1 Reliability evaluation overview

1.1 Objectives

This qualification report summarizes the results of the reliability trials that were performed to qualify the new product M24LR04E-R using the CMOSF8H silicon process technology in the ST Rousset 8" diffusion fab.

The voltage and the external RF carrier frequency covered by this document are:

- I²C interface:
 - Single supply voltage: 1.8 to 5.5 V
- Contactless interface:
 - ISO 15693 and ISO 18000-3 mode 1 compatible
 - RF carrier frequency: 13.56 MHz ± 7 kHz

The temperature range covered by this document is:

• -40 to 85 °C

The CMOSF8H is a new advanced silicon process technology that has already been qualified in the ST Rousset 8" fab, and is in production for EEPROM products and also for dual interface EEPROM M24LR64/M24LR16E products. This document serves for the qualification of the named product using the named silicon process technology in the named diffusion fab.

1.2 Conclusion

The new product M24LR04E-R using the CMOSF8H silicon process technology in the ST Rousset 8" diffusion fab has passed the reliability requirements and all products described in *Table 1* are qualified.

Refer to Section 3: Reliability test results for details on the reliability test results.

2 Device characteristics

The M24LR04E-R device is a dual-interface, electrically erasable programmable memory (EEPROM). It features an I²C interface and can be operated from a V_{CC} power supply. It is also a contactless memory powered by the received carrier electromagnetic wave. The M24LR04E-R is organized as 512 × 8 bits in the I²C mode and as 128 × 32 bits in RF mode.

The M24LR04E-R also features an energy harvesting analog output, as well as a user configurable digital output pin toggling during either RF write in progress or RF busy mode.

I²C uses a two-wire serial interface, comprising a bidirectional data line and a clock line. The devices carry a built-in 4-bit device type identifier code (1010) in accordance with the I²C bus definition.

The device behaves as a slave in the I²C protocol, with all memory operations synchronized by the serial clock. Read and Write operations are initiated by a Start condition, generated by the bus master. The Start condition is followed by a device select code and Read/Write bit (RW), terminated by an acknowledge bit.

When writing data to the memory, the device inserts an acknowledge bit during the 9th bit time, following the bus master's 8-bit transmission. When data is read by the bus master, the bus master acknowledges the receipt of the data byte in the same way. Data transfers are terminated by a Stop condition after an Ack for Write, and after a NoAck for Read.

In the ISO15693/ISO18000-3 mode 1 RF mode, the M24LR04E-R is accessed via the 13.56 MHz carrier electromagnetic wave on which incoming data are demodulated from the received signal amplitude modulation (ASK: amplitude shift keying). When connected to an antenna, the operating power is derived from the RF energy and no external power supply is required. The received ASK wave is 10% or 100% modulated with a data rate of 1.6 Kbit/s using the 1/256 pulse coding mode or a data rate of 26 Kbit/s using the 1/4 pulse coding mode.

Outgoing data are generated by the M24LR04E-R load variation using Manchester coding with one or two subcarrier frequencies at 423 kHz and 484 kHz. Data are transferred from the M24LR04E-R at 6.6 Kbit/s in low data rate mode and 26 Kbit/s high data rate mode. The M24LR04E-R supports the 53 Kbit/s fast mode in high data rate mode using one subcarrier frequency at 423 kHz.

The M24LR04E-R follows the ISO 15693 and ISO 18000-3 mode 1 recommendation for radio-frequency power and signal interface.

The M24LR04E-R provides an Energy-harvesting mode on the analog output pin Vout. When the Energy harvesting mode is activated, the M24LR04E-R can output the excess energy coming from the RF field on the Vout analog pin. In case the RF field strength is insufficient or when Energy harvesting mode is disabled, the analog output pin Vout goes into high-Z state and Energy harvesting mode is automatically stopped.

The M24LR04E-R features a user configurable digital out pin RF WIP/BUSY that can be used to drive a micro controller interrupt input pin (available only when the M24LR04E-R is correctly powered on the V_{cc} pin).

When configured in the RF write in progress mode (RF WIP mode), the RF WIP/BUSY pin is driven low for the entire duration of the RF internal write operation. When configured in the RF busy mode (RF BUSY mode), the RF WIP/BUSY pin is driven low for the entire duration of the RF command progress.

The RF WIP/BUSY pin is an open drain output and must be connected to a pull-up resistor.

Refer to the product datasheet for more details.

57

3 Reliability test results

This section contains a general description of the reliability evaluation strategy.

The named products are qualified using the standard STMicroelectronics corporate procedures for quality and reliability.

The product vehicle used for the die qualification is presented in *Table 3*.

Product	Product Silicon process technology		Package description	Assembly plant location	
M24LR04E	CMOSF8H	ST Rousset 8"	CDIP8	Engi assy ⁽¹⁾	
M24LR16E ⁽²⁾	CMOSF8H	ST Rousset 8"	CDIP8	Engi assy ⁽¹⁾	

 Table 3.
 Product vehicle used for die qualification

1. CDIP8 is a ceramic package used only for die-oriented reliability trials.

2. M24LR04E is derived from M24LR16E by metal mask option (same silicon process technology, same design core. Qualification data obtained on M24LR16E are applicable.

The product vehicle used for package qualifications are presented in Table 4.

 Table 4.
 Product vehicle used for package qualification

Product	Silicon process technology	Wafer fabrication location	Package description	Assembly plant location
			SO8N	ST Shenzhen
	CMOSF8H		3001	Subcon Amkor P1
M24LR16E ⁽¹⁾		ST Rousset 8"	TSSOP8	ST Shenzhen
		STROUSSELO	1330F0	Subcon Amkor P1
			UFDFPN8 (MLP8)	ST Calamba
			2 x 3 mm	Subcon Amkor P3

 M24LR04E is derived from M24LR16E by metal mask option (same silicon process technology, same design core. Qualification data obtained on M24LR16E are applicable.

3.1 Reliability test plan and result summary

The reliability test plan and the result summary are presented as follows:

- in *Table 5* for die-oriented tests
- in *Table 6* for SO8N ST Shenzhen package-oriented tests
- in Table 7 for TSSOP8 ST Shenzhen package-oriented tests
- in Table 8 for UFDFPN8 (MLP8) 2 x 3 mm ST Calamba package-oriented tests

	5. Die-oriented reliability test plan and result summary (CDIP8 / Engineering package)(*/										
							Results fail / sample size				
Test	Method	Conditions	Sample size /	No. of	Duration	M	24LR16E	(2)	M24LR04E		
			lots	lots		Lot 1	Lot 2	Lot 3	Lot 4	Lot 5 (3)	
	High temperature	e operating life after end	urance							-	
	AEC-Q100-005	1 million E/W cycles at 25 °C then: HTOL 150 °C, 6 V	80	3	1008 hrs	0/80	0/80	0/80	-	-	
EDR	Data retention af	ter endurance				•				•	
	AEC-Q100-005	1million E/W cycles at 25 °C then: HTSL at 150 °C	80	3	1008 hrs	0/80	0/80	0/80	-	-	
LTOL	Low temperature operating life										
LIUL	JESD22-A108	–40 °C, 6 V	80	3	1008 hrs	0/80	0/80	0/80	-	-	
	High temperature storage life										
HTSL	JESD22-A103	Retention bake at 200 °C	80	3	1008 hrs	0/80	0/80	0/80	-	-	
	Program/erase e	endurance cycling + bake	Э			•				•	
WEB	Internal spec.	1 million E/W cycles at 25 °C then: Retention bake at 200 °C / 48 hours	80	3	1 million cycles / 48 hrs	0/80 ⁽⁴⁾	0/80 ⁽⁴⁾	0/80 ⁽⁴⁾	-	-	
	Electrostatic disc	harge (human body mo	del)								
ESD HBM	AEC-Q100-002	C = 100 pF, R= 1500 Ω pads AC0, AC1	27	2	N/A	Pass 1000 V	Pass 1000 V	Pass 1500 V	Pass 1000 V	Pass 1000 V	
	JESD22-A114	C = 100 pF, R= 1500 Ω Other pads	21	3	N/A	Pass 3500 V	Pass 4000 V	Pass 4000 V	Pass 4000 V	Pass 3500 V	
ESD	Electrostatic disc	charge (machine model)				•				•	
MM	AEC-Q100-003 JESD22-A115	C = 200 pF, R = 0 Ω	21	3	N/A	Pass 400 V	Pass 400 V	Pass 400 V	Pass 400 V	Pass 400 V	
	Latch-up (curren	t injection and overvolta	ge stress	;)							
LU	AEC-Q100-004 JESD78A	At maximum operating temperature (150 °C)	6	3	N/A	Class II Level A	Class II Level A	Class II Level A	Class II Level A	Class II Level A	

Table 5.	Die-oriented reliability test plan and result summary (CDIP8 / Engineering package) ⁽¹⁾

1. See *Table 9: List of terms* for a definition of abbreviations.

2. M24LR04E is derived from M24LR16E by metal mask option (same silicon process technology, same design core. Qualification data obtained on M24LR16E are applicable.

3. Reliability results obtained on lot 5 (refer to PCN MMS-MMY/13/7707).

4. First rejects after 5 million cycles.

57

	Test short description									
Test	Method	Conditions	Sample size /	No. of	Duration	Results fail / sample size				
						M24LR16E ⁽²⁾			M24LR04E	
			lots	lots		Lot1	Lot2	Lot3	Lot4	
	Preconditioning	g: moisture sensitivity leve	el 1							
PC	JESD22- A113 J-STD-020D	MSL1, peak temperature at 260 °C, 3 IReflow	345	3	N/A	0/1145	0/345	0/114 5	-	
	Temperature h	umidity bias								
THB	AEC-Q100-	85 °C, 85% RH,			168 hrs	0/80	0/80	0/80		
(3)	JESD22-	bias 5.5 V	80	3	504 hrs	0/80	0/80	0/80	-	
	A101				1008 hrs	0/80	0/80	0/80		
	Temperature cy	/cling	-							
TC ⁽³⁾	AEC-Q100- JESD22- A104	–65 °C / +175 °C	80	3	1000 cycles	0/80	0/80	0/80	-	
TMSK	Thermal shock	S								
(3)	JESD22- A106	–55 °C / +125 °C	25	3	200 shocks	0/25	0/25	0/25	-	
	Autoclave (pressure pot)									
AC ⁽³⁾	AEC-Q100- JESD22- A102	121 °C, 100% RH at 2 ATM	80	3	168 hrs	0/80	0/80	0/80	-	
	High temperatu	ire storage life						J		
HTSL ⁽	AEC-Q100-				168 hrs	0/80	0/80	0/80		
3)	JESD22-	Retention bake at 150 °C	80	3	504 hrs	0/80	0/80	0/80		
	A103				1008 hrs	0/80	0/80	0/80		
ELFR	Early failure life rate									
(3)	AEC-Q100- 008	HTOL 150 °C, 6V	800	2	48 hrs	0/800	-	0/800	-	
	Electrostatic discharge (charge device model)									
ESD CDM	AEC-Q100- JESD22- C101	Field induced charging method	18	1	N/A	Pass >1500 V	-	-	Pass >1500 V	

Table 6.	Package-oriented reliability test plan and result summary (SO8N / ST Shenzhen) ⁽¹⁾
Table 0.	Fackage-onented renability test plan and result summary (SOON / ST Shenzhen)

1. See *Table 9: List of terms* for a definition of abbreviations.

2. M24LR04E is derived from M24LR16E by metal mask option (same silicon process technology, same design core. Qualification data obtained on M24LR16E are applicable.

3. THB-, TC-, TMSK-, AC-, HTSL- and ELFR- dedicated parts are first subject to preconditioning flow.

	Test short description									
Test	Method	Conditions	Sample size / lots	No. of	Duration	Results fail / sample size				
						M24LR16E ⁽²⁾			M24LR04E	
				lots		Lot1	Lot2	Lot3	Lot4	
	Preconditioning: moisture sensitivity level 1									
PC	JESD22- A113 J-STD-020D	MSL1, peak temperature at 260 °C, 3 IReflow	1145	3	N/A	0/1145	0/1145	0/1145	-	
	Temperature h	numidity bias								
THB	AEC-Q100-	85 °C, 85% RH,			168 hrs	0/80	0/80	0/80		
(3)	JESD22-	bias 5.5 V	80	3	504 hrs	0/80	0/80	0/80	-	
	A101				1008 hrs	0/80	0/80	0/80		
	Temperature of	cycling								
TC ⁽³⁾	AEC-Q100- JESD22- A104	–65 °C / +175 °C	80	3	1000 cycles	0/80	0/80	0/80	-	
TMSK	Thermal shock	<s< td=""><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td></s<>						•		
(3)	JESD22- A106	–55 °C / +125 °C	25	3	200 shocks	0/25	0/25	0/25	-	
	Autoclave (pressure pot)									
AC ⁽³⁾	AEC-Q100- JESD22- A102	121 °C, 100% RH at 2 ATM	80	3	168 hrs	0/80	0/80	0/80	-	
	High temperature storage life									
HTSL ⁽	AEC-Q100- JESD22- 150 °C			168 hrs	0/80	0/80	0/80			
3)			80	3	504 hrs	0/80	0/80	0/80	-	
	A103				1008 hrs	0/80	0/80	0/80		
ELFR (3)	Early failure life rate									
	AEC-Q100- 008 HTOL 150 °C, 6V 800 3 48 hrs 0/800 0/800 0/800 -								-	
	Electrostatic d	ischarge (charge device	model)							
ESD CDM	AEC-Q100- JESD22- C101	Field induced charging method	18	1	N/A	Pass >1500 V	-	-	Pass >1500 V	

Table 7. Package-oriented reliability test plan and result summary (TSSOP8 / ST Shenzhen) ⁽¹⁾

1. See *Table 9: List of terms* for a definition of abbreviations.

8/13

2. M24LR04E is derived from M24LR16E by metal mask option (same silicon process technology, same design core. Qualification data obtained on M24LR16E are applicable.

3. THB-, TC-, TMSK-, AC-, HTSL- and ELFR- dedicated parts are first subject to preconditioning flow.

Rev 3

Table 8. Package-oriented reliability test plan and result summary (UFDFPN8 MLP8 2 x 3 mm / ST Calamba) ⁽¹⁾

	Test short description									
Test	Method	Conditions	Sample size /	No. of	Duration	Results fail / sample size				
						M24LR16E ⁽²⁾			M24LR04E	
			lots	lots		Lot1	Lot2	Lot3	Lot4	
	Preconditionin	ng: moisture sensitivity le	vel 1						•	
PC	JESD22- A113 J-STD-020D	MSL1, peak temperature at 260 °C, 3 IReflow	345	3	N/A	0/345	0/345	0/345	-	
	Temperature h	numidity bias								
THB	AEC-Q100-	85 °C, 85% RH,		3	168 hrs	0/80	0/80	0/80		
(3)	JESD22-	bias 5.5 V	80		504 hrs	0/80	0/80	0/80	-	
	A101				1008 hrs	0/80	0/80	0/80		
	Temperature of	Temperature cycling								
TC ⁽³⁾	AEC-Q100- JESD22- A104	–65 °C / +175 °C	80	3	1000 cycles	0/80	0/80	0/80	-	
TMSK	Thermal shoc	Thermal shocks								
(3)	JESD22- A106	–55 °C / +125 °C	25	3	200 shocks	0/25	0/25	0/25	-	
	Autoclave (pre	essure pot)								
AC ⁽³⁾	AEC-Q100- JESD22- A102	121 °C, 100% RH at 2 ATM	80	3	168 hrs	0/80	0/80	0/80	-	
	High temperat	ture storage life								
HTSL	AEC-Q100- JESD22-	Retention bake at 150 °C	80	3	168 hrs	0/80	0/80	0/80		
(3)					504 hrs	0/80	0/80	0/80		
	A103				1008 hrs	0/80	0/80	0/80		
	-	lischarge (charge device	model)	I	1			1	1	
ESD CDM	AEC-Q100- JESD22- C101	Field induced charging method	18	1	N/A	Pass >1500 V	-	-	Pass >1500V	

1. See Table 9: List of terms for a definition of abbreviations.

2. M24LR04E is derived from M24LR16E by metal mask option (same silicon process technology, same design core. Qualification data obtained on M24LR16E are applicable.

3. THB-, TC-, TMSK-, AC-, and HTSL- dedicated parts are first subject to preconditioning flow.

4 Applicable and reference documents

- AEC-Q100: Stress test qualification for integrated circuits
- SOP 2.6.10: General product qualification procedure
- SOP 2.6.11: Program management fro product qualification
- SOP 2.6.12: Design criteria for product qualification
- SOP 2.6.14: Reliability requirements for product qualification
- SOP 2.6.19: Process maturity level
- SOP 2.6.2: Process qualification and transfer management
- SOP 2.6.20: New process / New product qualification
- SOP 2.6.7: Product maturity level
- SOP 2.6.9: Package and process maturity management in Back End
- SOP 2.7.5: Automotive products definition and status
- JESD22-A101: Steady state temperature humidity bias life test
- JESD22-A102: Accelerated moisture resistance unbiased autoclave
- JESD22-A103: High temperature storage life
- JESD22-A104: Temperature cycling
- JESD22-A106: Thermal shock
- JESD22-A108: Temperature, bias, and operating life
- JESD22-A113: Preconditioning of nonhermetic surface mount devices prior to reliability testing
- JESD22-A114: Electrostatic discharge (ESD) sensitivity testing human body model (HBM)
- JESD22-A115: Electrostatic discharge (ESD) sensitivity testing machine model (MM)
- JESD78A: IC Latch-up test
- J-STD-020D: Moisture/reflow sensitivity classification for nonhermetic solid state surface mount devices

5 Glossary

Table 9.	List of terms
----------	---------------

Terms	Description
EDR	NVM endurance, data retention and operational life
HTOL	High temperature operating life
LTOL	Low temperature operating life
нтв	High temperature bake
WEB	Program/Erase endurance cycling + bake
ESD HBM	Electrostatic discharge (human body model)
ESD MM	Electrostatic discharge (machine model)
LU	Latch-up
PC	Preconditioning (solder simulation)
тнв	Temperature humidity bias
тс	Temperature cycling
TMSK	Thermal shocks
AC	Autoclave (pressure pot)
HTSL	High temperature storage life
ELFR	Early life failure rate
ESD CDM	Electrostatic discharge (charge device model)

6 Revision history

Table 10. Document revision history

Date	Revision	Changes
06-Feb-2012	1	Initial release.
02-Apr-2012	2	Table 8 updated with ESD CDM results.
11-Feb-2013	3	<i>Table 5</i> updated with reliability results obtained on lot 5 (refer to PCN MMS-MMY/13/7707).

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

QRMMY1016 Qualification report

New product / M24LR16E-R using the CMOSF8H technology in the Rousset 8" Fab

Table 1. Product information

General information					
Commercial product	M24LR16E-RMN6T/2 M24LR16E-RDW6T/2 M24LR16E-RMC6T/2				
Product description	16 Kbit EEPROM with password protection, dual interface & energy harvesting: 400 kHz I ² C bus & ISO 15693 RF protocol at 13.56 MHz				
Product group	MMS				
Product division	MMY - Memory				
Silicon process technology	CMOSF8H				
Wafer fabrication location	RS8F - ST Rousset 8 inch, France				
Electrical Wafer Sort test plant location	ST Rousset, France				

Table 2.	Package description
----------	---------------------

Package description Qualified assembly plant location		Qualified final test plant location
SO8N	ST Shenzhen, China	ST Shenzhen, China
TSSOP8	ST Shenzhen, China	ST Shenzhen, China
UFDFPN8 (MLP8) 2 x 3 mm	SI Calamba, Philippines I SI Calamba, Philippines	

Reliability / Qualification assessment: PASS

1 Reliability evaluation overview

1.1 Objectives

This qualification report summarizes the results of the reliability trials that were performed to qualify the new product M24LR16E-R using the CMOSF8H silicon process technology in the ST Rousset 8" diffusion fab.

The voltage and the external RF carrier frequency covered by this document are:

- I²C interface:
 - Single supply voltage: 1.8 to 5.5 V
 - Contactless interface:
 - ISO 15693 and ISO 18000-3 mode 1 compatible
 - RF carrier frequency: 13.56 MHz ± 7 kHz

The temperature range covered by this document is:

• -40 to 85 °C

The CMOSF8H is a new advanced silicon process technology that has already been qualified in the ST Rousset 8" fab, and is in production for EEPROM products and also for dual interface EEPROM M24LR64 product. This document serves for the qualification of the named product using the named silicon process technology in the named diffusion fab.

1.2 Conclusion

The new product M24LR16E-R using the CMOSF8H silicon process technology in the ST Rousset 8" diffusion fab has passed the reliability requirements and all products described in *Table 1* are qualified.

Refer to Section 3: Reliability test results for details on the reliability test results.

2 Device characteristics

Device description

The M24LR16E-R device is a dual-interface, electrically erasable programmable memory (EEPROM). It features an I²C interface and can be operated from a V_{CC} power supply. It is also a contactless memory powered by the received carrier electromagnetic wave. The M24LR16E-R is organized as 2048 × 8 bits in I²C mode and as 512 × 32 bits in ISO 15693 and ISO 18000-3 mode 1 RF mode.

The M24LR16E-R also features an energy harvesting analog output, as well as a user configurable digital output pin toggling during either RF write in progress or RF busy mode.

I²C uses a two-wire serial interface, comprising a bidirectional data line and a clock line. The devices carry a built-in 4-bit device type identifier code (1010) in accordance with the I²C bus definition.

The device behaves as a slave in the I^2C protocol, with all memory operations synchronized by the serial clock. Read and Write operations are initiated by a Start condition, generated by the bus master. The Start condition is followed by a device select code and Read/Write bit (RW), terminated by an acknowledge bit.

When writing data to the memory, the device inserts an acknowledge bit during the 9th bit time, following the bus master's 8-bit transmission. When data is read by the bus master, the bus master acknowledges the receipt of the data byte in the same way. Data transfers are terminated by a Stop condition after an Ack for Write, and after a NoAck for Read.

In ISO15693/ISO18000-3 mode 1 RF mode, the M24LR16E-R is accessed via the 13.56 MHz carrier electromagnetic wave on which incoming data are demodulated from the received signal amplitude modulation (ASK: amplitude shift keying). When connected to an antenna, the operating power is derived from the RF energy and no external power supply is required. The received ASK wave is 10% or 100% modulated with a data rate of 1.6 Kbit/s using the 1/256 pulse coding mode or a data rate of 26 Kbit/s using the 1/4 pulse coding mode.

Outgoing data are generated by the M24LR16E-R load variation using Manchester coding with one or two subcarrier frequencies at 423 kHz and 484 kHz. Data are transferred from the M24LR16E-R at 6.6 Kbit/s in low data rate mode and 26 Kbit/s high data rate mode. The M24LR16E-R supports the 53 Kbit/s fast mode in high data rate mode using one subcarrier frequency at 423 kHz.

The M24LR16E-R follows the ISO 15693 and ISO 18000-3 mode 1 recommendation for radio-frequency power and signal interface.

The M24LR16E-R provides an energy harvesting mode on the analog output pin Vout. When energy harvesting mode is activated, the M24LR16E-R can output the excess energy coming from the RF field on the Vout analog pin. In case the RF field strength is insufficient or when energy harvesting mode is disabled, the analog output pin Vout goes into high-Z state and energy harvesting mode is automatically stopped.

The M24LR16E-R features a user configurable digital out pin RF WIP/BUSY that can be used to drive a microcontroller interrupt input pin (available only when the M24LR16E-R is correctly powered on the V_{CC} pin).

When configured in RF write in progress mode (RF WIP mode), the RF WIP/BUSY pin is driven low for the entire duration of the RF internal write operation. When configured in RF busy mode (RF BUSY mode), the RF WIP/BUSY pin is driven low for the entire duration of the RF command progress, from the RF command Start Of Frame (SOF) until the end of the command execution.

The RF WIP/BUSY pin is an open drain output and must be connected to a pull-up resistor.

Refer to the product datasheet for more details.

3 Reliability test results

This section contains a general description of the reliability evaluation strategy.

The named products are qualified using the standard STMicroelectronics corporate procedures for quality and reliability.

The product vehicle used for the die qualification is presented in Table 3.

Table 3.	Product vehicle used for die qualification	

Product	Silicon process technology	Wafer fabrication location	Package description	Assembly plant location
M24LR16E-R	CMOSF8H	ST Rousset 8"	CDIP8	Engi assy ⁽¹⁾

1. CDIP8 is a ceramic package used only for die-oriented reliability trials.

The product vehicle used for package qualifications is presented in Table 4.

Table 4.	Product vehicle used for package qualification
----------	--

Product	Silicon process technology	Wafer fabrication location	Package description	Assembly plant location
			SO8N	ST Shenzhen
				Subcon Amkor P1
M24LR16E-R	LR16E-R CMOSF8H ST Rousset 8"		TSSOP8	ST Shenzhen
			1330F0	Subcon Amkor P1
		UFDFPN8 (MLP8)	ST Calamba	
			2 x 3 mm	Subcon Amkor P3

3.1 Reliability test plan and result summary

The reliability test plan and the result summary are presented as follows:

- in Table 5 for die-oriented tests
- in *Table 6* for SO8N ST Shenzhen package-oriented tests
- in *Table 7* for TSSOP8 ST Shenzhen package-oriented tests
- in Table 8 for UFDFPN8 (MLP8) 2 x 3 mm ST Calamba package-oriented tests

		· · ·	Test sh	ort de	scription	-			
Test			Sample	No. of		Results fail / sample size			
Test	Method	Conditions	size /		Duration		M24LR16E-R		
			IOTS	lots		Lot 1	Lot 2	Lot 3	Lot 4 ⁽²⁾
	High temperature	e operating life after endu	urance						
EDR	AEC-Q100-005	1 million E/W cycles at 25 °C then: HTOL 150 °C, 6 V	80	3	1008 hrs	0/80	0/80	0/80	-
LDIX	Data retention af	ter endurance							
	AEC-Q100-005	1million E/W cycles at 25 °C then: HTSL at 150 °C	80	3	1008 hrs	0/80	0/80	0/80	-
LTOL	Low temperature operating life						•		
LIUL	JESD22-A108	–40 °C, 6 V	80	3	1008 hrs	0/80	0/80	0/80	-
	High temperature storage life								
HTSL	JESD22-A103	Retention bake at 200 °C	80	3	1008 hrs	0/80	0/80	0/80	
	Program/erase e	ndurance cycling + bake							•
WEB	Internal spec.	1 million E/W cycles at 25 °C then: Retention bake at 200 °C / 48 hours	80	3	1 million cycles / 48 hrs	0/80 ⁽³⁾	0/80 ⁽³⁾	0/80 ⁽³⁾	-
	Electrostatic disc	charge (human body mod	del)						
ESD HBM	AEC-Q100-002	C = 100 pF, R= 1500 Ω pads AC0, AC1	27	3	N/A	Pass 1000 V	Pass 1000 V	Pass 1500 V	Pass 1000 V
	JESD22-A114	C = 100 pF, R= 1500 Ω Other pads	21	3	N/A	Pass 3500 V	Pass 4000 V	Pass 4000 V	Pass 3500 V
ESD	Electrostatic disc	charge (machine model)							•
MM	AEC-Q100-003 JESD22-A115	C = 200 pF, R = 0 Ω	21	3	N/A	Pass 400 V	Pass 400 V	Pass 400 V	Pass 400 V
	Latch-up (curren	t injection and overvoltag	ge stress)						
LU	AEC-Q100-004 JESD78A	At maximum operating temperature (150 °C)	6	3	N/A	Class II Level A	Class II Level A	Class II Level A	Class II Level A

Table 5. Die-oriented reliability test plan and result summary (CDIP8 / Engineering package)⁽¹⁾

1. See Table 9: List of terms for a definition of abbreviations.

2. Reliability results obtained on lot 4 (refer to PCN MMS-MMY/13/7707).

3. First rejects after 5 million cycles.

Test			Test short description							
Test	Method Conditions Sample No. size / of Duration lots lots				Results fail / sample size					
			M24LR16E-R							
				Lot1	Lot2	Lot3				
•	sture sensitivity level 1									
PC JESD22-A113 MS J-STD-020D	L1, peak temperature at 260 °C, 3 IReflow	345	3	N/A	0/1145	0/345	0/1145			
Temperature humidit	Temperature humidity bias									
THB				168 hrs	0/80	0/80	0/80			
(2) AEC-Q100- JESD22-A101 85	JESD22-A101 85 °C, 85% RH, bias 5.5 V 80 3		504 hrs	0/80	0/80	0/80				
				1008 hrs	0/80	0/80	0/80			
Temperature cycling										
TC ⁽²⁾ AEC-Q100- JESD22-A104	–65 °C / +175 °C	80	3	1000 cycles	0/80	0/80	0/80			
TMSK Thermal shocks	Thermal shocks									
⁽²⁾ JESD22-A106	–55 °C / +125 °C	25	3	200 shocks	0/25	0/25	0/25			
Autoclave (pressure	pot)									
AC ⁽²⁾ AEC-Q100- JESD22-A102 12 ⁻	1 °C, 100% RH at 2 ATM	80	3	168 hrs	0/80	0/80	0/80			
High temperature sto	orage life									
HTSL				168 hrs	0/80	0/80	0/80			
(2) AEC-Q100- JESD22-A103 Re	etention bake at 150 °C	80	3	504 hrs	0/80	0/80	0/80			
				1008 hrs	0/80	0/80	0/80			
Early failure life rate										
(2) AEC-Q100- 008	HTOL 150 °C, 6V	800	2	48 hrs	0/800	-	0/800			
Electrostatic discharg	ge (charge device model)									
CDM AEC-Q100- JESD22-C101	Field induced charging method	18	1	N/A	Pass >1500 V	-	-			

Table 6.	Package-oriented reliability test plan and result summary (SO8N / ST Shenzhen) ⁽¹⁾
Table 0.	Fackage-onented reliability test plan and result summary (Soon 7 ST Shenzhen)

1. See *Table 9: List of terms* for a definition of abbreviations.

2. THB-, TC-, TMSK-, AC-, HTSL- and ELFR- dedicated parts are first subject to preconditioning flow.

		Test	short des	cripti	on			-
			Sampla	No.		Results fail / sample size		
Test	Method	Conditions	Sample size /	of	Duration	M24LR16E-R		R
		lots lots			Lot1	Lot2	Lot3	
	Preconditioning	: moisture sensitivity level 1						
PC	JESD22-A113 J-STD-020D	MSL1, peak temperature at 260 °C, 3 IReflow	1145	3	N/A	0/1145	0/1145	0/1145
	Temperature hu	midity bias						
THB	450.0400				168 hrs	0/80	0/80	0/80
(2)	AEC-Q100- JESD22-A101	85 °C, 85% RH, bias 5.5 V	80	3	504 hrs	0/80	0/80	0/80
					1008 hrs	0/80	0/80	0/80
	Temperature cy	cling						
TC ⁽²⁾	AEC-Q100- JESD22-A104	–65 °C / +175 °C	80	3	1000 cycles	0/80	0/80	0/80
TMSK	Thermal shocks							
(2)	JESD22-A106	–55 °C / +125 °C	25	3	200 shocks	0/25	0/25	0/25
(0)	Autoclave (pres	sure pot)						
AC ⁽²⁾	AEC-Q100- JESD22-A102	121 °C, 100% RH at 2 ATM	80	3	168 hrs	0/80	0/80	0/80
	High temperatur	re storage life						
HTSL					168 hrs	0/80	0/80	0/80
(2)	AEC-Q100- JESD22-A103	Retention bake at 150 °C	80	3	504 hrs	0/80	0/80	0/80
					1008 hrs	0/80	0/80	0/80
ELFR	Early failure life rate							
(2)	AEC-Q100- 008	HTOL 150 °C, 6V	800	3	48 hrs	0/800	0/800	0/800
ESD	Electrostatic dis	charge (charge device model)						
CDM	AEC-Q100- JESD22-C101	Field induced charging method	18	1	N/A	Pass >1500 V	-	-

Table 7. Package-oriented reliability test plan and result summary (TSSOP8 / ST Shenzhen) ⁽¹⁾	Table 7.	Package-oriented reliabilit	y test plan and result summar	y (TSSOP8 / ST Shenzhen) ⁽¹⁾
--	----------	-----------------------------	-------------------------------	---

1. See *Table 9: List of terms* for a definition of abbreviations.

2. THB-, TC-, TMSK-, AC-, HTSL- and ELFR- dedicated parts are first subject to preconditioning flow.

Table 8.	Package-oriented reliability test plan and result summary (UFDFPN8 MLP8 2 x 3 mm /
	ST Calamba) ⁽¹⁾

	Test short description									
Test			Sample size /	No. of lots	Duration	Results fail / sample size				
	Method	Conditions				M24LR16E-R				
			lots			Lot1	Lot2	Lot3		
Preconditioning: moisture sensitivity level 1										
PC	JESD22-A113 J-STD-020D	MSL1, peak temperature at 260 °C, 3 IReflow	345	3	N/A	0/345	0/345	0/345		
	Temperature hu	midity bias								
THB	150.0400	85 °C, 85% RH, bias 5.5 V		3	168 hrs	0/80	0/80	0/80		
(2)	AEC-Q100- JESD22-A101		80		504 hrs	0/80	0/80	0/80		
					1008 hrs	0/80	0/80	0/80		
()	Temperature cycling									
TC ⁽²⁾	AEC-Q100- JESD22-A104	–65 °C / +175 °C	80	3	1000 cycles	0/80	0/80	0/80		
TMSK	Thermal shocks									
(2)	JESD22-A106	–55 °C / +125 °C	25	3	200 shocks	0/25	0/25	0/25		
	Autoclave (pressure pot)									
AC ⁽²⁾	AEC-Q100- JESD22-A102	121 °C, 100% RH at 2 ATM	80	3	168 hrs	0/80	0/80	0/80		
	High temperature storage life									
HTSL	AEC-Q100- JESD22-A103	Retention bake at 150 °C	80	3	168 hrs	0/80	0/80	0/80		
(2)					504 hrs	0/80	0/80	0/80		
					1008 hrs	0/80	0/80	0/80		
ESD	Electrostatic discharge (charge device model)									
ESD CDM	AEC-Q100- JESD22-C101	Field induced charging method	18	1	N/A	Pass >1500 V	-	-		

1. See Table 9: List of terms for a definition of abbreviations.

2. THB-, TC-, TMSK-, AC-, and HTSL- dedicated parts are first subject to preconditioning flow.

4 Applicable and reference documents

- AEC-Q100: Stress test qualification for integrated circuits
- SOP 2.6.10: General product qualification procedure
- SOP 2.6.11: Program management fro product qualification
- SOP 2.6.12: Design criteria for product qualification
- SOP 2.6.14: Reliability requirements for product qualification
- SOP 2.6.19: Process maturity level
- SOP 2.6.2: Process qualification and transfer management
- SOP 2.6.20: New process / New product qualification
- SOP 2.6.7: Product maturity level
- SOP 2.6.9: Package and process maturity management in Back End
- SOP 2.7.5: Automotive products definition and status
- JESD22-A101: Steady state temperature humidity bias life test
- JESD22-A102: Accelerated moisture resistance unbiased autoclave
- JESD22-A103: High temperature storage life
- JESD22-A104: Temperature cycling
- JESD22-A106: Thermal shock
- JESD22-A108: Temperature, bias, and operating life
- JESD22-A113: Preconditioning of nonhermetic surface mount devices prior to reliability testing
- JESD22-A114: Electrostatic discharge (ESD) sensitivity testing human body model (HBM)
- JESD22-A115: Electrostatic discharge (ESD) sensitivity testing machine model (MM)
- JESD78A: IC Latch-up test
- J-STD-020D: Moisture/reflow sensitivity classification for nonhermetic solid state surface mount devices

5 Glossary

Terms	Description
EDR	NVM endurance, data retention and operational life
HTOL	High temperature operating life
LTOL	Low temperature operating life
НТВ	High temperature bake
WEB	Program/Erase endurance cycling + bake
ESD HBM	Electrostatic discharge (human body model)
ESD MM	Electrostatic discharge (machine model)
LU	Latch-up
PC	Preconditioning (solder simulation)
тнв	Temperature humidity bias
тс	Temperature cycling
TMSK	Thermal shocks
AC	Autoclave (pressure pot)
HTSL	High temperature storage life
ELFR	Early life failure rate
ESD CDM	Electrostatic discharge (charge device model)

6 Revision history

Table 10. Docum	ent revision history
-----------------	----------------------

Date	Revision	Changes
18-Oct-2011	1	Initial release.
18-Jan-2012	2	List of qualified commercial products updated in <i>Table 1</i> . Added <i>Table 8</i> . <i>Table 6</i> updated with latest results.
07-Feb-2013	3	<i>Table 5</i> updated with reliability results obtained on lot 4 (refer to PCN MMS-MMY/13/7707).

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Appendix D: Errata sheet (rev. 2):

Table 1.

M24LR04E-R, M24LR16E-R, M24LR64E-R Errata sheet

M24LR04E-R, M24LR16E-R and M24LR64E-R device limitations

Silicon identification

This errata sheet applies to STMicroelectronics M24LR04E-R, M24LR16E-R and M24L64E-R dual interface EEPROM products. The devices will be referred to M24LRxxE-R throughout the document.

The full list of part numbers is shown in *Table 1*. These parts can be identified physically by their marking or directly on the application by reading the product revision byte in I^2C .

Identification by marking

				First line marking		
Reference	Package	Ordering code	Internal sales type	Revision 0xF	Revision 0xE and below	
	TSSOP08	M24LR04E-RDW6T/2	M24LR04RDW6T2UTE	404EU	4BEUB	
M24LR04E-R	MLP	M24LR04E-RMC6T/2	M24LR04RMC6T2UGE	404E	4BEB	
	SO8N	M24LR04E-RMN6T/2	M24LR04RMN6T2UGE	24L04ER	24LBERB	
	Bare die	M24LR04E-RUW20/2	M24LR04ERUW20/U2	N/A	N/A	
	TSSOP08	M24LR16E-RDW6T/2	M24LR16RDW6T2UTE	416EU	4DEUB	
M24LR16E-R	MLP	M24LR16E-RMC6T/2	M24LR16RMC6T2UGE	416E	4DEB	
	SO8N	M24LR16E-RMN6T/2	M24LR16RMN6T2UGE	24L16ER	24LDERB	
	Bare die	M24LR16E-RUW20/2	M24LR16ERUW20/U2	N/A	N/A	
M24LR64E-R	TSSOP08	M24LR64E-RDW6T/2	M24LR64EDW6T2UTA	464EU	4FEUB	
	MLP	M24LR64E-RMC6T/2	M24LR64EMC6T2UGA	464E	4FEB	
	SO8N	M24LR64E-RMN6T/2	M24LR64EMN6T2UGA	24L64ER	24LFERB	

-

Device summary

Identification by I²C read

The part can be identified by reading in I^2C the product revision byte included in the system area.

The product revision is the Most Significant Nibble of the byte located at address 0x911 in the system area (Device select code E2 = 1).

All the limitations described in this document have been fixed for product revision 0xE and below.

1 **Product evolution**

The following table gives a summary of the fix status.

Legend for *Table 2*: A = workaround available, grayed = fixed.

Table 2.Product evolution summary

Limitation	Rev F	Rev E and below
Section 2.1: RF field drop during I ² C write cycle execution	А	
Section 2.2: SetRstEHEn command not functional in Addressed mode	A	

2 Limitations

2.1 **RF field drop during I²C write cycle execution**

Description

The M24LRxxE-R can be powered though an external V_{CC} pin or via an induced voltage generated by the RF field.

Occasionally, an RF field drop occurring during an I^2C write cycle might have an impact on the M24LRxxE-R internal supply voltage. This drop can be caused either by an amplitude modulation of the RF field or a by a significant current spike on the Energy Harvesting pin (V_{OUT}) . It might result in the I^2C bus to be blocked or in an incomplete programming cycle.

Workaround

Revision 0xF

It is recommended to avoid any RF activity during the execution of I²C write operations. When this not possible, please follow the recommendations below to improve your design robustness:

- After an I²C write operation, it is recommended to check that the data programmed have been correctly updated and reprogram them if necessary.
- When the M24LRxxE-R I²C bus is blocked (no acknowledge), the I²C master shall power-on/power-off the chip (V_{CC} pin) to regain control of the M24LRxxE-R. An optimized method to do this is to power the M24LRxx-R V_{CC} pin using a microcontroller I/O.
- Revision 0xE and below

This limitation has been corrected by a design fix that avoids blocking the I^2C interface. T_Prog flag (b7 of the control register located at address 920h in system area) indicates the correct duration of the write cycle. Refer to the product datasheets for details.

2.2 SetRstEHEn command not functional in Addressed mode

Description

When the *SetRstEHEn* command is sent in Addressed mode, all M24LRxxE-R devices execute the command whatever their unique identifier (UID).

Consequently, it is not possible to address an M24LRxxE-R device individually to set or reset the Energy Harvesting.

This limitation does not prevent designers from using the Energy Harvesting command but this command must be executed in a Non-addressed mode or in Select mode.

- When the command is used in Non-addressed mode, all M24LRxxE-R devices in reader operating volume will execute the command.
- When the command is executed in Select mode, only the M24LRxxE-R previously put in select state will execute the *SetRstEHEn* command.

Workaround

Revision 0xF

Set and reset the Energy harvesting using only Non-addressed or Select mode.

• Revision 0xE and below

This limitation has been corrected by a design fix that allows supporting the full SetRstEHEn command features. Refer to the product datasheets for details.

3 Revision history

Table 3.Document revision history

Date	Revision	Changes
23-Apr-2012	1	Initial release.
11-Feb-2013	2	Added silicon revisions 0xE and below and updated limitation descriptions accordingly.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 023091 Rev 2

M24LR04E-R, M24LR16E-R, M24LR64E-R Dual Interface EEPROM Refined design

Document Revision History				
Date	Rev.	Description of the Revision		
February 04, 2013	1.00	First draft creation		

Source Documents & Reference Documents				
Source document Title	Rev.:	Date:		

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2013 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

A7/.